PROGRESS REPORT (Year 2016-17)

File No: (ECR/2016/000760)

1. Project Title:	DST No: ECR/2016/000760					
Design and Development of Three Axis Flexural Stages for						
Micro-milling Workstation						
2. PI (Name and Address):	Date of Birth:					
Dr. Kiran Suresh Bhole,	10.03.1977					
Associate Professor, Department of Mechanical Engg.,						
Sardar Patel College of Engineering, Andheri (West),						
Mumbai 400058						
3. Co-PI (Name and Address): Nil	Date of Birth: NA					
4. Broad areas of Research: Engineering Sciences						
4.1 Sub Area: Mechanical Engineering; Design and						
Manufacturing						
5. Approved Objectives of the Proposal:						
Objective 1: Design and development of double flexural XY stage						
Objective 2: Design and development of spiral shaped flexural Z-stage						
Objective 3: System integration for the development of micro-milling workstation						
Objective 4: Characterization of dynamics of the flexural stage based micro-milling workstation						
Objective 5: Fabrication of complex shaped microstructures using developed micro-milling workstation.						
Date of Start: 25 th November 2016	Total cost of Project:					
	Rs. 19,92,120/-					
Date of completion : 24 th November 2019	Expenditure as on: 10 th January 2018					
	Capital (Non Recurring) – Rs. 1224489/-					
	General (Recurring) – Rs. 23159/-					

6. Methodology:

a. Methodology to realize Objective 1: Design and development of double flexural XY stage

Figure 1(a) shows a double flexural mechanism (DFM) for XY stage. It consists of two fixed blocks marked as A, four flexible beams, primary motion stage B, and secondary motion stage. On application of force F on primary motion stage, primary motion stage exhibit perfect Y-translation. Such two DFMs are designed to have desired XY translation. Design of XY flexural mechanism mainly involves determination of the length, width and thickness of the flexible beams (Beryllium copper strips are widely used because of its high fatigue strength) used in double flexural mechanism. Dimensions of flexible links are designed considering static forces (due to stiffness of beams) and dynamic forces acting on the primary motion stage in the project. Non-contact sensors (optical/magnetic encoders, refer Figure 4 (c)) and actuators for each of the flexure stages are chosen so that desired positioning accuracy is achieved. Actuators with linear optical encoders (Renishaw Encoders) will be co-located on XY flexural mechanism to have an ease of control despite of non-linear flexibility effects.

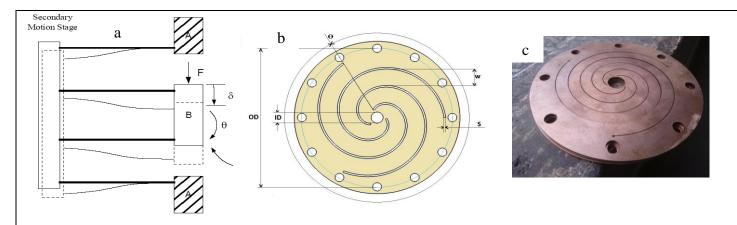


Figure 1: (a) Double parallelogram flexural system for XY stage (b) CAD model of 3 arm flexural disc; (c) fabricated spiral shaped flexural disc to form flexural feed stage.

b. Methodology to realize Objective 2: Design and development of spiral shaped flexural Z-stage

Figure 1(b) and (c) shows the CAD model and actual photograph respectively of one of the discs of the spiral arm flexural Z-stage consists of three spiral slots. In flexural Z-stage, assembly consists of two sets of parallel stacked flexure discs interspersed with central and peripheral spacing rings (see Figure 2 (a) and Figure 4 (b)). High radial stiffness and low axial stiffness is the desirable criteria for the flexural system for an application of Z-stage of micro-milling workstation. This is because for the feed in machining, the axial motion against actuation force is desired along with arresting radial displacement due to error in assembly or actuation. Spiral stacked flexural assembly bears the undesirable radial and desirable axial loads generated while machining process. Considering the criteria, the parametric study of the flexural arm is studied and based on the analysis, each spiral traverses of an angle of 540° is selected for the application. The final converge flexural stage after analysis consists of a two stacks (each of 2 flexural discs) formed so as to have high radial stiffness and low axial stiffness with enough strength (refer Figure 2). The collet and tool holding assembly is selected for holding the cutting tool. BLDC motor is selected to impart cutting torque to the cutting tool.

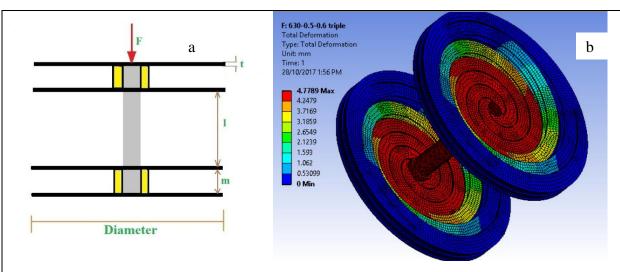


Figure 2: (a) Assembly of 3 arm flexural disc for z-stage; (b) FE Analysis of flexural z-stage.

c. Methodology to realize Objective 3: System integration for the development of micro-milling workstation After design and fabrication of the XY flexural stage and spiral arm based flexural Z-stage, the appropriate actuators and sensors will be embedded for actuation of stages and purpose of position sensing for feedback respectively. Figure 3 shows the schematic representation of system integration for micro-milling workstation. The voice coil actuators and flexural systems are best suited for the proposed application for XY stages. The data acquisition system, dSPACE DS 1104 (refer Figure 4 (c)) is purchased for interfacing of subsystems of the micro-milling workstation. The actual data from the system will be acquired by the dSPACE DS 1104 platform from the encoders employed in the system.

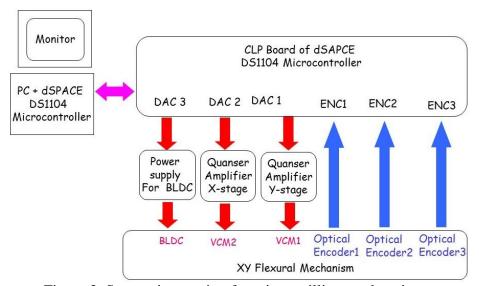


Figure 3: System integration for micro-milling workstation.

d. Methodology to realize Objective 4: Characterization of dynamics of the flexural stage based micro-milling workstation

The effect of different parameters of the flexural discs such as diameters, thickness, spiral angle and spacing

distance are observed in finite element software (ANSYS) for displacement, radial and axial stiffness (refer Figure 2(b)). The simulation results are presented in the non-dimensional form for its generalization (refer Figure 4 (a)). In analysis (z/d), (s/d), (p/d) and (t/d) are dimensionless axial displacement, spacing, spiral pitch and flexural plate thickness respectively (refer Figure 1(b), 2(a) and 4 (a)). The conclusion of results in non-dimensional form has provided generalized design guidelines for the similar kind of systems (refer Figure 4(a)). Based on this analysis, the details of systems are finalized and will be manufactured. The assembled developed system will also be characterized under different operating parameters experimentally before actual fabrication of the microstructures. The dynamic characteristics of the flexural stages under different speed will be observed. The different scan velocity will be provided to the XY stages through actuators. The real time system data will be captured by the data acquisition system dSPACE DS 1104 for the accuracy in linear guidance and will be analyzed for axial displacement against maximum stress, radial stiffness and axial stiffness using force and strain gauge sensors.

e. Methodology to realize Objective 5: Fabrication of complex shaped microstructures using developed micromilling workstation

After exhaustive characterization, system will be used to fabricate the complex shaped microstructures. Various application oriented structures such as typical micro-channels will be fabricated through micro-milling workstation. For fabrication of these structures, first CAD model of the structure will be developed. For the intended structure, the scan path of the milling cutter will be decided using custom made scan path generation program developed in the MATLAB. The output of the scan path program is the data of x and y position at a particular time. This scan path data will be deployed directly to the dSPACE microcontroller. The data from the dSPACE microcontroller will be then provided to the concern actuators of the XY stage through DAC channels and current amplifier. Before commencement of the scan path of the workpiece, the depth of the milling will be provided through high resolution z-stage and rotational torque to the milling cutter through BLDC.

7. Salient Research Achievements:

7.1 Summary of Progress

a) Simulation work:

The 3 arm double stage spiral shaped flexural system is characterized with finite element method. The characterization is presented in non-dimensional way for its generalization. Based on this exhaustive characterization the graphical design tool is developed (refer Figure 4(a)). Further based on this developed designed guideline the production drawings for the micro-milling workstation are prepared.

b) Procurement of equipment:

Most of the major equipments required for the project is purchased (refer Figure 4(c)). The testing of these equipments is done and is commissioned. The customized components are then designed based on the purchased standard equipments and developed methodology. The system is now ready for manufacturing.

7.2 New Observations

Feed stage of the system consists of two stage three spiral arm is characterized considering different geometrical variables. The generalized design guideline for the similar kind of system is presented (refer Figure 4(a)).

7.3 Innovations

- Generalized design methodology for two stage three arm spiral shaped flexural system.

7.4 Application Potential

7.4.1 Long Term:

The long term potential applications of the work may be stated as follows:

- Development of machining centre for fabrication of microstructures in subtractive way.
- High resolution flexural system capable to develop accurate microstructures.
- 7.4.2 Generalized design guideline for multi arm multi stage spiral shaped flexural system.

7.4.3 Short Term:

- Training of under graduate and post graduate students in this domain.
- Research publications

7.5 Any other: ---

Research work which remains to be done under project :

- Objective 2 and 4 are partially attained. Attainment of remaining objectives is in progress.

Ph.D Produced No: 01 (in progress)

Technical Personnel Trained = 05

and other

Data

02

tool holding accessories

Research Publications arising out of the present project: 01

List of Publications emanated out of this Project (including title, author(s), journals & year(s):

(A) Papers published only in cited Journals (SCI): Nil

000005948

Procurement: Yes

- (B) Papers published in Conference Proceedings, Popular Journals etc. 01
 - Kiran Bhole and Megha Janbandhu, "Design and Development of Double Spiral Shaped Flexural Feed Stage for Micro-drilling Workstation", International Conference on Advances in Materials and Manufacturing Applications IConAMMA 2017, 17th -19th August 2017 (selected for publication in Materials Today Proceedings of Elsevier).

Patents filed/ to be filed: Nil								
Major Equipment (Model and Make)								
Sr. No	Sanctioned	Procured (Yes/No) Model and Make	Cost (Rs. In	Working	Utilization			
	List		lakhs)	(Yes/No)	Rate (%)			
01	Collect,	Procurement: Yes	0.47009	Yes	100%			
	adapter,	Model and Type: Quattro, Model						
	Cutting tools	Number 3601, 200020623, 000005745,						

7.198

Yes

100%

	Acquisition	dSPACE 1104 platform			
	System				
	(DAQ) and				
	microcontroller				
03	Encoders	Procurement: Yes	1.9008	Yes	100%
		Make: Magnetic and optical encoders,			
		Renishaw, Models:			
		1. RGH25F R/HEAD 3m cable 15w-D,			
		2. REF INTERPOLATOR X1000 (6MHz)			
		3. LM1311CPRGAA10D00			
		4. LM13 INC PROG 1M 15 PIN D			
		5. MS10AM500A0000			
04	Manual stages	Make: Holmarc	2.44791	Yes	100%
	and	Model: LMS150x150x50			
	positioning	HSN 9033			
	devices				
05	DC power	Purchase in process			
	supply	Aplab			
06	Brushless DC	Yes, LXLWU3, GPMM1840, LXKSY5,	0.22809	Yes	100%
	motor with	GPMG4675, LXLWY4			
	controller				
07	Force Sensors	No			
08	Linear Current	No			
	Amplifiers				
09	Voice coil	No			
	Actuators				
	CF :	Total	12.24489		

Image of Equipment:

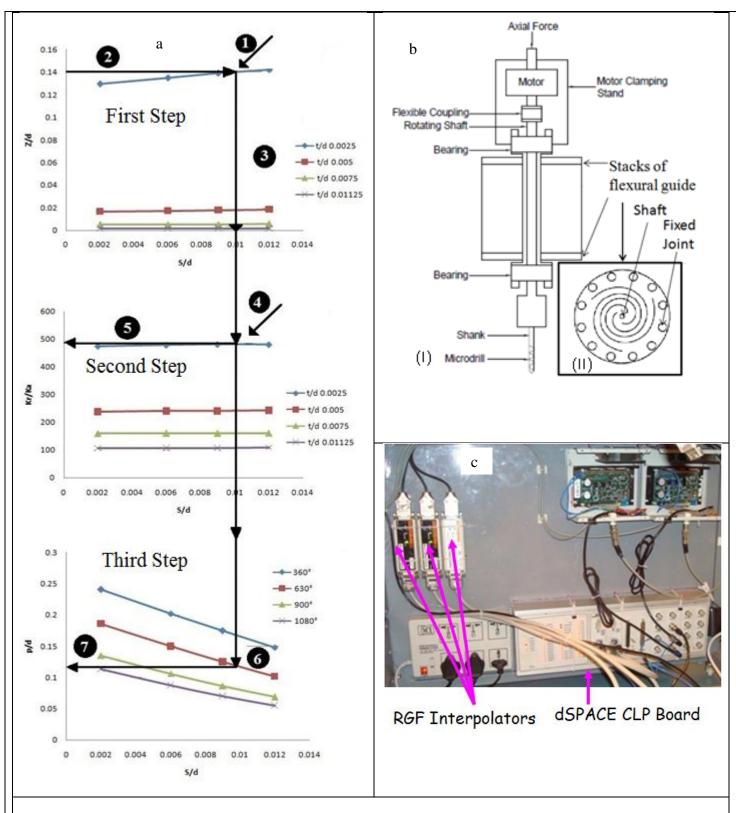


Figure 4. (a) Design method example for two layer three arm flexure system with Z/d=0.14 (b) Schematic of flexural z-stage of micro-milling (c) RGF interpolators of encoders and dSPACE 1104 DAQ platform.